binscatter:
Binned Scatterplots in Stata

Michael Stepner

MIT

August 1, 2014
Binned scatterplots are an informative and versatile way of visualizing relationships between variables.

They are useful for:

- Exploring your data
- Communicating your results

Intimately related to regression

- Any coefficient of interest from an OLS regression can be visualized with a binned scatterplot

Can graphically depict modern identification strategies

- RD, RK, event studies
Familiar Ground
Scatterplots:

- Are the most basic way of visually representing the relationship between two variables
- Show every data point
- Become crowded when you have lots of observations
 - Very informative in small samples
 - Not so useful with big datasets
Source: National Longitudinal Survey of Women 1988 (nlsw88)
OLS Regression

Linear regression:

- Gives a number (coefficient) that describes the observed association
 - “On average, 1 extra year of job tenure is associated with an m higher wage”

- Gives us a framework for inference about the relationship (statistical significance, confidence intervals, etc.)
. reg wage tenure

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 2231</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>2339.38077</td>
<td>1</td>
<td>2339.38077</td>
<td>F(1, 2229) = 72.66</td>
</tr>
<tr>
<td>Residual</td>
<td>71762.4469</td>
<td>2229</td>
<td>32.1949066</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>74101.8276</td>
<td>2230</td>
<td>33.2295191</td>
<td>R-squared = 0.0316</td>
</tr>
</tbody>
</table>

| wage | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|------------|------------|-----------|-------|-----|---------------------|
| tenure | 0.1858747 | 0.0218054 | 8.52 | 0.000| 0.1431138 0.2286357 |
| _cons | 6.681316 | 0.1772615 | 37.69 | 0.000| 6.333702 7.028931 |
binscatter: step-by-step introduction
Let’s walk through what happens when you type:

. \texttt{binscatter wage tenure}
. binscatter wage tenure
To create a binned scatterplot, `binscatter`

1. Groups the x-axis variable into equal-sized bins
2. Computes the mean of the x-axis and y-axis variables within each bin
3. Creates a scatterplot of these data points
4. Draws the population regression line

`binscatter` supports weights:

- weighted bins
- weighted means
- weighted regression line
Binscatter and Regression: intimately linked
Consider two random variables: Y_i and X_i

The conditional expectation function (CEF) is

$$\mathbb{E}[Y_i|X_i = x] \equiv h(x)$$

The CEF tells us the mean value of Y_i when we see $X_i = x$

The CEF is the best predictor of Y_i given X_i

- in the sense that it minimizes Mean Squared Error
Suppose we run an OLS regression:

$$Y_i = \alpha + \beta X_i + \epsilon$$

We obtain the estimated coefficients $\hat{\alpha}, \hat{\beta}$

Regression fit line: $\hat{h}(x) = \hat{\alpha} + \hat{\beta} x$

Regression CEF Theorem:

The regression fit line $\hat{h}(x) = \hat{\alpha} + \hat{\beta} x$ is the best linear approximation to the CEF, $h(x) = \mathbb{E}[Y_i|X_i = x]$ in the sense that it minimizes Mean Squared Error
A typical binned scatterplot shows two related objects:

- a non-parametric estimate of the CEF
 - the binned scatter points

- the best linear estimate of the CEF
 - the regression fit line
\[\hat{h}(x) = \hat{\alpha} + \hat{\beta}x \]

\[\mathbb{E}[y \mid Q_8 < x \leq Q_9] \]

\[\mathbb{E}[y \mid Q_1 < x \leq Q_2] \]
Interpreting binscatters
If the binned scatterpoints are tight to the regression line, the slope is precisely estimated

- regression standard error is small

If the binned scatterpoints are dispersed around the regression line, the slope is imprecisely estimated

- regression standard error is large

Dispersion of binned scatterpoints around the regression line indicates statistical significance
\[\epsilon \sim N(0, 0.2) \]

\[\epsilon \sim N(0, 2.0) \]

Coef = 0.199 (0.002)

Coef = 0.208 (0.025)
- R^2 tells you what fraction of the *individual* variation in Y is explained by the regressors

- A binned scatterplot collapses all the individual variation, showing only the mean within each bin
The same binscatter can be generated with:
- enormous variance in $Y \mid X = x$
- or almost no individual variance

because binscatter only shows $\mathbb{E}[Y \mid X = x]$
Coef = 0.200
(0.003)
Many different forms of underlying data can give the same regression results

- Some examples from Anscombe (1973)...

Anscombe (1973): Dataset 1

\[\beta = 0.5 \pm 0.12 \]

Years of Schooling vs. Earnings ($1000)
Earnings ($1000) vs. Years of Schooling

\[\beta = 0.5 \pm 0.12 \]

Anscombe (1973): Dataset 2

Part 1: Introduction
Anscombe (1973): Dataset 3

\[\beta = 0.5 \pm 0.12 \]
Earnings (\$/1000)

\[\beta = 0.5 \ (0.12) \]

Anscombe (1973): Dataset 4

Years of Schooling

Data: Dataset 4

Anscott (1973): Data Set 4
Suppose the true data generating process is logarithmic

\[wage_i = 10 + \log(tenure_i) + \epsilon_i \]
Now forget that I ever told you that...

You’re just handed the data.
binscatters: informative about functional form

- Run a linear regression:

\[\text{wage}_i = \alpha + \beta \text{tenure}_i + \epsilon_i \]

```
. reg wage tenure
```

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>317.940139</td>
<td>1</td>
<td>317.940139</td>
<td>F(1, 498) = 281.25</td>
</tr>
<tr>
<td>Residual</td>
<td>562.975924</td>
<td>498</td>
<td>1.13047374</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>880.916063</td>
<td>499</td>
<td>1.76536285</td>
<td>R-squared = 0.3609</td>
</tr>
</tbody>
</table>

| wage | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-------|----------|-----------|------|-----|---------------------|
| tenure| .1841569 | .0109811 | 16.77| 0.000| .1625819 .2057318 |
| _cons | 10.28268 | .0961947 | 106.89| 0.000| 10.09369 10.47168 |
binscatters: informative about functional form

. binscatter wage tenure
binscatters: informative about functional form

. binscatter wage tenure

![Graph showing a scatter plot with wage on the y-axis and tenure on the x-axis. The plot includes a solid red line and a dashed gray line, with data points scattered along the line.](image)
If the underlying CEF is smooth, binscatter provides a consistent estimate of the CEF

- As N gets large, holding the number of quantiles constant, each binned scatter point approaches the true conditional expectation
binscatters: informative about functional form

. binscatter wage tenure in 1/500
binscatters: informative about functional form

`. binscatter wage tenure in 1/5000`

![Graph showing the relationship between wage and tenure with a linear trend line.](image)
binscatters: informative about functional form

\[\text{binscatter wage tenure in 1/5000000} \]
Interpreting binscatters: moral of the story

1. Binned scatterplots are informative about standard errors

2. Binned scatterplots are not informative about R^2

3. And binned scatterplots are informative about functional form
How many bins?
What is the “best” number of bins to use?

- Default in binscatter is 20
 - in my personal experience, this default works very well

- Optimal number of bins to accurately represent the CEF depends on curvature of the underlying CEF
 - which is unknown (that’s why we’re approximating it!)

 - a smooth function can be well approximated with few points
 - a function with complex local behaviour requires many points to approximate its shape
Let’s play a quick game of...

What function is it?
Round 1:
5 bins
Round 3: Sinusoidal
binscatter: Multivariate Regression
The use of binned scatterplots is not restricted to studying simple relationships with one x-variable.

binscatter can use partitioned regression to illustrate the relationship between two variables while controlling for other regressors.
Suppose we’re interested in the relationship between y and x in the following multivariate regression:

$$y = \alpha + \beta x + \Gamma Z + \epsilon$$

Option 1: Run the full regression with all regressors, obtain $\hat{\beta}$

Option 2: Partitioned regression

1. Regress y on Z ⇒ residuals $\equiv \tilde{y}$
2. Regress x on Z ⇒ residuals $\equiv \tilde{x}$
3. Regress \tilde{y} on \tilde{x} ⇒ coefficient $= \hat{\beta}$

The $\hat{\beta}$ obtained using full regression and partitioned regression are identical
We’re interested in the relationship between wage and tenure, but want to control for total work experience:

\[wage = \alpha + \beta \text{tenure} + \gamma \text{experience} + \epsilon \]

Could directly apply partitioned regression:

- `reg wage experience`
- `predict wage_r, residuals`
- `reg tenure experience`
- `predict tenure_r, residuals`

- `binscatter wage_r tenure_r`

The procedure is built into `binscatter`:

- `binscatter wage tenure, controls(experience)`
. binscatter wage tenure

Coef = 0.19
(0.02)
. binscatter wage tenure, controls(experience)

\[\text{Coef} = 0.04 \pm 0.03 \]
by-variables
Plotting multiple series using a by-variable

- `binscatter` will plot a separate series for each group
 - each by-value has its own scatterpoints and regression line
 - the by-values share a common set of bins
 - constructed from the unconditional quantiles of the x-variable
. binscatter wage age, by(race)
. binscatter wage age, by(race) absorb(occupation)
RD and RK designs
Binned scatterplots are very useful for illustrating regression discontinuities (RD) or regression kinks (RK).

Consider a wage schedule where the first 3 years are probationary:

- After 3 years, receive a salary bump
- After 3 years, steady increase in salary for each additional year
RD design

- binscatter wage tenure, line(none)
RD design

. binscatter wage tenure, discrete line(none)
. binscatter wage tenure, discrete rd(2.5)
The firm decides to cap the wage schedule after 15 years of tenure

- No more salary increases past 15 years
. binscatter wage tenure, discrete line(none)
. binscatter wage tenure, discrete rd(2.5 14.5)
Important caution:
- The `rd()` option in binscatter only affects the regression lines
 - It does not affect the binning procedure
 - A bin could contain observations on both sides of the discontinuity, and average them together

Implications:
- Doesn’t matter with discrete x-variable and option `discrete`
 - No binning is performed, each x-value is its own bin
- With continuous x-variable, need to manually create bins
 - Use `xq()` to specify variable with correctly constructed bins
 - A future version of binscatter respect RDs when binning
Event Studies
binscatter makes it easy to create event study plots.

Suppose we have a panel of people, with yearly observations of their wage and employer:

- We observe when people change employers
- For each person with a job switch
 - Define year 0 as the year they start a new job
 - So year -1 is the year before a job switch
 - Year 1 is the year after a job switch
. binscatter wage eventyear, line(connect) xline(-0.5)
Now suppose we also know whether they were laid off at their previous job.

▷ Does the wage experience of people who are laid off differ from those who quit voluntarily?
. binscatter wage eventyear, line(connect) xline(-0.5)
> by(layoff)
binscatter is optimized to run quickly and efficiently in large datasets

It can be installed from the Stata SSC repository

```
ssc install binscatter
```

These slides and other documentation is posted on the binscatter website:

www.michaelstepner.com/binscatter
References
Examples of binscatter used in research

References for this talk

